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ABSTRACT

We study a model equation for the elongation of filaments or sheets of
polymeric liquids under the influence of a force applied to the ends.
Mathematically this equation has the form of a nonlinear Volterra integro-
differential equation with the kernel given by a finite sum of exponentials.
The unknown function denotes the length of the filament or, respectively, the
thickness of the sheet. We study the equation both analytically and
numerically. The force is assumed to converge to zero exponentially as

t + -» and to vanish identically after a finice time tye It is shown that
under this condition there is a unique solution which approaches a given limit
as t + -»; moreover, the solution also has a limit as t + +o. A numerical
scheme is analyzed and convergence uniformly in t is established.

Particular attention is paid to the dependence of solutions on a parameter

4, which corresponds to a Newtonian contribution to the viscosity. It is
proved that solutions converge uniformly in t as u *+ 0, and that the
convergence of the numerical scheme is also uniform in y.
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SIGNIFICANCE AND EXPLANATION

The evolution of the shape of a filament or a sheet of a polymeric liquid

subjected to an external force f(t) is described by the equation
. £ 30 a
uy(t) + f_m a(t-s)(xz——— - y(8))ds = £(t)y (t)
y (s)

where y denotes the length of the filament or the thickness of the sheet,
respectively, and- u 1is a Newtonian contribution to the viscosity which can

either be positive or zero. The exponent a depends on the physical

situation under study.
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We regard the length at t = -» as known and investigate its evolution. It
is shown that for a physically realistic class of functions f there exists a
unique solution, and that the length approaches a new stationary value at

t = » (wtich is in general different (greater) from the value at t = -=j,
Numerical calculations are performed for several functions f. For the kernel
a we choose values given in the literature for polyethylene at 150°C. Our
computations show in particular that the solutions do not significantly depend

on u unless yu exceed:; 10 000 Nm Zsec.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




A NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION
DESCRIBING THE STRETCHING OF POLYMERIC LIQUIDS

P, Markowich* and M. Renardy“
1. Introduction
In this paper we consider a mathematical model describing the stretching
of a filament or a sheet of a molten polymer under a prescribed force ¢£.

These two physical situations are illustrated by the following diagrams:

(1) - }——>f

(2)

Our model is based on the following physical assumptions:
(i) The polymer satisfies the "rubberlike liquid" constitutive relation
(s1.
(ii) The strain and stress tensors are independent of spatial coordinates,
and, in particular, inertial forces are neglected (for a model that
includes inertial forces see [9]).

(iii) The molten polymer is incompressible.

*
This material is based upon work supported by the National Science
Foundation under Grant No. MCS-7927062 and by the Austrian Ministry for
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Under these assumptions the problem is described by the equation (for a

derivation see [6}, [9]):

3

* t t

(1.1 ey + [o a(t—s)(x-z—(—) - y(s))ds = £(e)yNt), = < t < o
y (s)
where vy denotes the length of the filament or the thickness of the sheet,
resp., W 1is a nonnegative material constant modelling a Newtonian
contribution to the viscosity, which may physically come from a solvent or
fractions of low molecular weight, and the memory kernel a has the form
N =-A,u

(1.2) afu) = ) K e *
2=1

with positive constants K Az. f denotes the force acting on the ends of

2’
the filament, or -f denotes the force acting on the edges of the sheet,
resp. The exponent o is 2 for the filament and % for the sheet (for our
mathematical analysis, we assume 0 < g < 3). The difference comes from
geometric reasons: If f were denoting the force per unit area, a would be
1 for both cases. Due to the incompressibility, however, the area on which
f 1is acting depends on vy.

Although this has no significance to the mathematical analysis, the
physical relevance of the model is limited to f > 0 for the filament and
f < 0 for the sheet. If e.g. one attempts to compress the filament, then
buckling rather than contraction would be observed, and this instability is
not described by our equation.

A problem related to ours was investigated by lodge, McLeod and Nohel

[6]. They assume vy(t) 1is given for t < 0, it is nondecreasing (which

implies but does not follow from f » 0), and y(-«) = 1., They then assume




et N A ¢

£f =0 for t > 0 and study the elastic recovery. For a class of kernels

a and functions F(y(t), v(s)) under the integral, which include those
specified above, they prove the existence of a unique solution to the history
value problem, which is nondecreasing for t > 0 and converges to a limit
v(=) > 1. Their proofs rely on monotonicity arquments, and they also prove
that the solutions depend monotonically on the prescribed history and the
parameter u. One of the main points in their analysis is the behavior of
solutions near u = 0, 1in this case the solutions become discontinuous at
t = 0, and they face a singular perturbation problem with a boundary layer.
On the basis of these results Nevanlinna ({8] used an implicit first order
Euler-type discretization scheme for (1.1)., He proved that this
discretization preserves all the monotonicity properties, and that the global
error is O(hY) for any vy < 1 uniformly with respect to p € [(0,u] and
t € [tO,M), to > 0. It was not shown, however, that the scheme is first order
accurate uniformly in * and y, i.e. that the global error is O(h).

In our analysis, we prescribe a continuous function f(t), which
satisfies 1lim e-Otf(t) =0 for some o¢> 0, and £ =0 for ¢t € [to,w).
We prove th:Z:&}or any such f, problem (1.1) has a unique solution vy(t)
satisfying 1lim y(t) = 1. This convergence is exponential, moreover, the

t 4~

solution exists globally in time, and converges exponentially to a constant

y(®) > 0 as t » », more precisely, we have 1lim e_Ot(y(t) - 1) =
t+—oo
lim eot(y(t) ~ y(o)) = 0. This holds for any yu » 0. The solution depends
t >+ -
continuously on u in a norm stronger than the L -norm (more specifically,




in an exponentially weighted L“Lnorm, which incorporates the asymptotic
behavior as t + 1w), even at yu = 0. No boundary layer occurs, since the
solution for u = 0 bhas the correct asymptotic behavior as t + t«. Our
proofs are mainly based on the implicit function theorem and Liapunov function
arguments.

In the second part of the paper we discuss the computational solution of
{(1.1). Like Nevanlinna, we use a first order implicit Euler-type
discretization with uniform mesh size h, after having cut the interval

{~»,0] at t_m+ In the convergence proof, we use a discrete analogue of
exponentially weighted Lm—spaces (infinite sequences converging
exponentially on both sides). Choosing a space with an exponential weight

X (o-e)lt . :
given by e ) l, 0 < ¢ < g, we obtain an error estimate of the form O(h)

-£1t

+ ofe “! -m,) in the norm of that space, moreover, this holds uniformly in
pe [0,») and ¢ € [0,60], €9 < g. The main tool in the proof is Keller's
[3] nonlinear stability concept.

Our numerical results imply that the solution vy(t,u) does not differ
significantly from vy(t,0) on [-«,®] if | is smaller than a certain
fairly large number. If 1y exceeds this number, then the solutions change
considerably.

The paper is organized as follows: In chapter 2 we present the

analytical results, chapter 3 concerns the discretization procedure, and the

computations are reported in chapter 4.




2. Analysis of the Continuous Problem

Solutions for Small Forces

N
Let us consider equation (1.1), where 0 < a ¢ 3, a(u) = z Ke ’

and yu > 0. This equation can be reduced to a system of ODE's in two ways.

We set
-, (t-5)
t i 1
g9, (t) = [__ Ke 5 ds
y (8)
¢ -Xi(t~s)
h, (t) = f_m K e yls)ds .
Then (1.1) reads
N
.o 1 3 _ a
y =-5 (1 toyy” -np - £e)y”)
i=1
K,
(2.1) é = —Xg +-—-];
i i’i 2
Y
hi = -Aihi + Kiy .
2 hi
If we set Y T 9y Gi = ;-, we obtain
. 1 N a
y = -3 ('2 (vy; = 8) y - £lt)y )
i=1
. 2 2 o~=1
. = - = - + =
(2.2) \ MY PR - Sy ]Z vy = 89 + 5 v ety
3 1 1 a=1
A A TR v ) (v, = 80 =+ 8,8ty .

.',

Both forms (2.1) and (2.2) will be used in the following.

K.

i , .
= Tl Y. = &i is a stationary

Clearly, if f =0, then vy =1, a; = h, ;

1

i
solution.




LEMMA 2.1. The 2N + 1-square matrix setting up the right hand side of the

linearization of (2.1) (or (2.2)) at the stationary solution y = 1, 9y = hi =

Ki

5% has zero as a simple eigenvalue. All other eigenvalues have negative
i

real parts.

PROOF: Clearly, (2.1) and (2.2) give the same eigenvalues. Let us consider

(2.1). The linearization is set up by the following matrix

B )
S R L R S I B
4=1 WA uoow u uou M
-2K, =Xy 0 ... 0 00...0
-2K S 00...0
- 0 . -
A = 2K 0 A 00 0
X, 0 0... O Ay .- . 0
K, 0 0... © 0~Aye « .« 0
L 0 0... O 00 . . .=x

This yields the characteristic polynomial

2 3Ki 3Ki
P(M) =T (=x, = -] — =~ 2= )] ———) .
3 3 i uki i ul ki )
Thus N eigenvalues are give by A = -Ai, the remaining N + 1 eigenvalues

are the zeros of the last factor. Obviously one of these is zero, and it is
simple. It remains to be proved that all the remaining roots have negative

real parts. Consider the equation

3](i 3Ki
(2.3) SR SR S Mo wesydl
i uki i u( Xi 2




The left hand side has poles at )\ = -Xi, and its sign is positive for

A+ -Ai+ and negative for X\ + - xi-. For convenience, let the Ai's be
ordered such that A1'< Az Ceeol AN. It follows that there is a root in each
interval (-Xi, -Ai+1) and another root between -AN and -«, Hence all
non-zero roots are real and negative.

We want to prove the existence of solutions for small f using the

implicit function theorem. The spaces in which we apply this theorem are

defined in the following:

"
DEFINITION 2.2. Let ¥%™ = {g e c™R, R)| 1im %t g (¢) = 0 for
|t] +o
g,n .
k=20,14+..,n}. A natural norm in Y is
n
t] (k
g = Z sup leol lg( )(t)l .
k=0 teRr
AY
Moreover, let x°'" = {f e c(R, R)| lim Otk ) 26 for k= 1,..u.m,

lt] +

2 f(®) such that 1lim e“C(£(t) - £(w)) = lim e %Cf£(t) = 0} .

troo ty—o
. a,n :
A natural norm in X is
2 oltl_(x) -ot ot
e = z sup le f (t)] + sup le f(t)| + suple (£f(t) - f(w)]|

k=1 ter t <0 t>0

+ £l ] .

THEOREM 2.3. Let Y denote (y,Y1,Y2,...,YN,61,62,...,6N) and

K1 KN K1 KN)

A1"' "AN’ A1"" ,AN

the absolute values of the non-zero eigenvalues of A). Then the following ‘

Yq = (1, Let o > 0 be small enough (smaller than all

holds: I1f f € Yo,n has sufficient small norm, then (2.2) has a solution

+1 +1
Y satisfying Y - Y0 a x%" x (x&" )ZN. Y depends smoothly on f.




Proof: When we put Y - Yo = 2, equation (2.2) can be written in the form

+1 +1 2N '
G(z,f) = 0, and G 1is a smooth mapping from (Xo,n x (Yc,n )2 ) x y? n

. g,n_ 2N+1 .
into (Y ) . Moreover, the linearization DZG(O,O) is the mapping
. N . 2Ki
v- °
- + - + + —= - + §. -
Yoy, 80 » (-uy .Z (rg=800 yp * A Y+ T L (e 6 % A6
i=1 i3
Ki
Y Z (Yj~6j))- According to lemma 2.2, the Yy and § components form an
i
. +1 2 2 . .
isomorphism from (Yo,n 1) N onto (Yo,n) N. Moreover, the mapping vy =+ vy

. . . n+1 n . .
is a bijection from x°%’ on Y%". Therefore D,G(0,0) is an isomorphism

+ +
from x°'7 ' (Yo’n)2N onto (Yo'n)2N 1. The implicit function theorem

yields the result.




Global Behavior of Solutions for Large f

Theorem 2.4. Let yu > 0 and f: R » R be continuous and such that

lim e-ctf(t) =0 (¢g>0 1is as in Theorem 2.3), f(t) =0 for t > t_ . For

t oo 0
every such f, equation (2.2) has a unique solution satisfying 1lim y(t) = 1,
t r=—c
Ki
lim vy, = 1lim §, = F This solution exists globally for all times ¢t,
t—o ta—o T i
and lim y(t) exists and is strictly positive.
t+too
Proof: If t, is chosen large enough, e-Otf(t) becomes small on (-w,-t1)

and one can use an implicit function argument analogous to theorem 2.3 to
prove the existence of a solution on (—m,—t1). This solution is unique in
the class of solutions approaching their limiting values at t = - at a rate
of eot. However, if a solution tends to these limits at all, it can be seen
from the last two equations of (2.2) and the implicit function theorem that

Yi and éi tend to their limiting values at a rate of ect. The first
equation then implies that y approaches its limiting value at the same
rate. Hence the solution is actually unique in the class of all solutions
approaching the prescribed limits at t = -» as claimed in the theorem.

We now continue this solution to the right, and we have to make sure that
it does not blow up at a finite time. For that purpose it is more convenient
to consider (2.1) rather than (2.2). From the second and third equation we
see that as long as y stays positive, q; and hi have a positive lower
bound for all finite times, which is independent of y. Hence, if vy becomes

3

. . a . . .
too larae, 9,y will dominate over fvy and also over h.1 (since this is

less than some constant times max y{1)). Analoaously, if vy Dbecomes too
(_mlt]

small, hi will dominate over fya and qin. Hence v cannot ao to zero

or infinity in finite time, whence we find aglobal existencre.

-9-




Let now t > t,. Then f = 0, and using (2.2) again, we find the

0
Liapunov function
N L] L]
N i aial Bi i
L tu
. 2 K, K,
e A 4 g + -t
.4 i i
{2.4) i Ai i Ai
2 2
N Xiu ui Bi N 2
E-— Y — ————— ————————— - - °
.Z 2 kA X, L (o - 8)
i=1 + = 8, + i i=1
A R i 02
i i
Ki Ki
Here we have put ui = Yi - KT' Bi = Gi - KT' As we know that Yi and Gi
i i
Ki X,
stay positive, the denominators a + FN Bi + Rl are always positive, and

[

i
the left side of the equation (2.4) is thus the derivative of a positive

definite function that decreases along trajectories. As an immediate
consequence we obtain that o and Bi tend to 0 exponentially for
t + o, One easily concludes from (2.2) that £&n y approaches a constant,

and hence 1lim y(t) > 0 exists.
t >

The next corollary provides information on the final recovery for

physically significant forces.

Corollary 2.5. If f 1is always non~negative and not identically zero, then

y(®) > y(=-»), if £ 1is always non-positive and not identically zero, then
y(®) < y(=«).
Proof: Assume f > 0, the other case is analogous. It is immediate from the
integral ecquation (1.1) that £ > 0 implies y > 1 for all t. Moreover, if
f # 0, there must be some t* such that y(t*) > 1. Let now z(t) =

min y{1). Then (1.7) implies that
*

et ,t]

=10~




*

d 1t 3
(e)e 2(8) > min (0,= = [ a(t-s)(z7(t)-1)ds)

. *
> - % ffm a(t-s)(z3(t)-1)ds .

If z(t) - 1 is sufficiently small, this gives an inequality of the form

da -kt
[E€]+ z(t) > ~ Ce (z=-1) .

It follows immediately that 1lim z(t) > 1.
£+

Remark: These results are obviously expected on a physical basis. Namely,
they simply state that pulling the filament effectively increases its length
(f >0, a=2) or the thickness of the sheet decreases (f < 0, a= %),
resp.

We now give an argument showing that theorem 2.4 does not hold, if the
condition that f(t) =0 for ¢t > t0 is replaced by exponential decrease
of f and a# 1 (in case a = 1 the previous argument still goes through,
the only difference being that f(t) % (ai - Si) has to be added on the

i=1

right side of (3.1)). We restrict ourselves to the case N = 1. (2.1) reads:

. 3
-y = gy - h - f(t)y“

[ K
= e 4+ —
| Ag >
Yy
h = =ih + Ky .

We solve these equations for t > 0 by the following ansatz:

-11-




After some calculation one finds that this satisfies *he equations if

Ky
K 0
g, = ————, h, = — and
0 v 2(A-Zv) 0 Aty
0
£ a=1 _ 3K + yv(A-2v)(A+v)
oo (X=2v) (A V) ’

We thus find solutions where f goes to zero exponentially, but y + « fcr
a>1 and y +0 for a< 1.

All we have to make sure is that by appropriate continuation for t < 0
we can match the conditions at t = ~®, For this purpose continue y in an
arbitrary way to the left such that y is smooth and approaches 1
exponentially at t = -, The equations for g and h then have unique
solutions approaching % for t + -». These solutions can be matched to the

solutions for t > 0 by appropriate choice of gy and h,. Finally f is

determined by the first equation.




The Case =0

In this case the first equation of (2.1) becomes
3 R a
y"+ J g. - J h -f(t)y =0 .
i 4o 1

Proposition 2.6. For any g > 0, h > 0 and 0 < a < 3 the equation F(y) =

gy3 -~ h - fya = 0 has a unique solution in (0,«).

Proof: We have F(0) < 0, 1lim F(y) > 0, so there is clearly a positive
Y-N”

solution. To show it is unique, we investigate zcros of F'(y). We have

' 2 a=1 , .
F'(y) = 3gy® - aofy . If y>0 and F'(y) = 0, we find F(y) =

1 3 3 .

E yF'({y) + v (1 - ;)q - h < 0. This means F cannot have a positive
maximum, whence the result.

The solution vy(g,h,f) can then be inserted into the other equations,

yielding a system of 2N equations.
Theorem 2.7. The same statement as in Theorem 2.4 holds also for 4y = 0.

Also, Corollary 2.5 still holds.

Sketch of the Proof: The existence of a solution on (-m,-t1) and global

existence in time are proved in the same manner as before, and we do not

repeat the argquments. If f = 0, one finds from (2.2)

. - _ x
Yi T ThYy K Y2y g
8 =-16 +x -6 ¥ .
i i1 i iy
This leads to
. L 2 2
N aa; iBi N Xiai XiBi i N
¢ — = - . V -
05 =t <) .Y_ ( Tt Y (a a.)
i=1 + i 8+ i i=1 2Ha. + _i) R+ Y i=1
LU i X, i A, i,
1 1 1 1

where cx,1 and ﬂi are defined as before.

-13~




T —————

and 81

Since Z(ai - Bi) is now egqual to zero, we still find that o
i

approach 0 exponentially, whence the result.
For the corollary, observe that

3
1 _ _ ¢t Vie_ay 1Y (E)
) = f_w a'(t-s) [ >

y (s) y (s)

§(t)-3y2(t) IEQ a(t-s) - y(s))ds .

Using this, one can apply an argument analogous to the previous one.

Finally, we want to prove that solutions depend continuously on u, even

n be given such that it either has a small norm or it

at u=0. Let f e Y’
satisfies the conditions of theorem 2.4. We know that a unique solution y(t)
satisfying y(-») = 1 exists both for yu=0 and for uy > 0. In (2.1), we

N N 3/
put g = z = h = z hi' and z =y - 1V/g (for y=0, £ =0, the first

-ué = q(qv/g + 2)3 - h - f(t)(Qv/g + z)a + g; qv/g

Qe
™
>
[
Re]
-
+
~—
W
Q|Fy R
+
N
N
N

(2.5)

> 0 such that for every uy € [(0,yu.]

As we have proved, there exists some o

o
system (2.5) has a unique solution in the Banach manifold
g,n Ki a,n Ki 3
- ’ - —————— ’ - —
Mn - {(zrgirhi)'z ey ’ gi ey ’ hi X, —J
N 3 h i
i 2
g

O,H}

ey . In

Q=

particular, let zg, 95,0¢ hi,O denote the solution for y = 0.

Linearizing at this solution (or likewise at any solution for u > 0},
we obtain a system of linear ODE's with a matrix approaching a constant limit
as t + ~» and t * +®, From a discussion of the asymptotic behavior of

solutions of the linearized system for ¢t + t®», one zan easily see that for

-14-
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IN+1
any inhomogeneity in (Yo’n)‘ there is a unique soclution in the tangent

space of Mn. The arggment parallels our existence proof for solutions:
First consider the problem on (-=,-T}] with T large, where the matrix is
approximated by the linearization at the trivial solution. Continuation of
solutions for t > -T presents no problem, since the equation is linear, and
finally the behavior for‘ t + +» must be discussed. We leave the details of
the analysis to the reader.

Thus the linearization is a densely defined bijective operator from the
tangent space of M, onto (Yc,n)2N+1. It is thus natural tc attempt proving
the existence of a continuous family of solutions in a neighborhood of yu = 0
using the implicit function theorem. One does, however, face the problem that

the term yuz represents an unbounded operator.

The first equation of (2.4) has the form

d
- —_— - = - - . - - + +
iy (z zo) p(t)(z zo) f(t) .L(h ho,f fo) nonlinear terms 0(u)
3 h0 5 3 h0 -
where o(t) = 3g (7/ — + 2.)° - oftt)(/ — + 2. )¢ is positive and
0 9 0 9 0

N X

converges to 5 o for t + tw. L is linear in its arguments, and the term
i=1 i

0(u) does not involve any unbounded operators, after the second and third
equation of (2.4) have been substituted into the first to replace é and h.
It is easy to show that the operator (yu gz + p(t))-1 : Yo,n + Yo,n is
strongly continuous with respect to p. Denoting V = (z-zo,q1-q1’0,...,

qN-qN,O’h1-h1,0'""hN_hN,O)' we can thus rewrite (2.5) in the abstract form.

-1
(2.6) L{y)v = N(y,V) <==>V - (L{w)) N(yVv) =20
where L(uy) has a strongly continuous inverse and N{(0,0) = 0, DvN(0,0) = 0,
The existence of a continuous solution V{(u) now foliows from the

following theorem.

~-15-




Theorem 2.8:

Let X,Y and 2Z be Banach spaces, U a neighborhood of (0,0) in
XxY, and F: U+2Z a mapping having the following properties:
{i) F(0,0) =0
(ii) F 1is continuous
(iii) F 1is continuously differentiable with respect to y for each fixed
X
(iv) DYF(O,O): Y+Z is an isomorphism.
{v) DYF is continuous at the point (0,0).
Then the equation F{x,y) = 0 has a unique resolution y = f(x) in some
neighborhood of (0,0), and f 1is continuous.

The proof of this theorem differs by no means from the standard proof of
the implicit function theorem (cf. [10], [11]), but it is crucial for our
problem that (iii) and (v) are sufficient rather than continuity of DYF in a
neighborhood of (0,0) as usually required. Namely, we can identify X

with R, Y with the tangent space of M , Z with ¥9", x with y and y

. R -1
with V. Por yu fixed, the term L(u) N(u,V) depends smoothly on V,

moreover, since lim D N(u,V) = 0, we also have
u+0,V->0
. -1 -1
lim D_(L(y) N{(u,V)) = lim L(y) DVN(u,V) = 0. Hence Theorem 2.8
p+0,V+0 u0,V+0

applies to (2.6), although the standard form of the implicit function theorem

would not. This yields a continuous solution V = V(y).

d -1
Moreover, the mapping (u,z) » (n 3t + plt)) z 1is a Ck-mappinq from
o,n . (o1} n-k . .
R x Y into Y « From the following theorem, which was also proved in

[10]1, [11], one concludes that V() is actually a Ck—function of u when

-k
regarded as lying in Y% nTr,
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Theorem 2.9:
let Y(k) and Z(k) resp. (%x=0,1,...N) Dbe two hierarchies of Banach

(k) o g(k+1)  plk) o HUk+1)

spaces such that Y the imbeddings being

continuous. Iet X be a finite dimensional Banach space and F a mapping
from a neighborhood U of 0 in XXY(N) into Z(N) having the following

properties:

(1) Fu o xxx!Xyy ¢ 2 wmo,1, ... ,N

(ii) For each fixed Xk, Fk:=Fl (x) satisfies the conditions of
U n (X )

Theorem 2.8, when it is considered as a mapping from XxY

20K

(k) into

For x fixed, Fk(x,.) is a smooth (i.e. sufficiently often

differentiable) mapping.

{(x) . Z(k+m)

(11i) F: XxY is of class C" for each k=0,%,...N and

m < N-k.
(iv}) The mapping (x,y,u1,...,uj) > 2z = Dxiyj F(x,y)(u1,...,uj) is
continuous from X x Y(k) b3 (Y(k))J into £i(x,Y(k+i)).

The» the solution y = f(x) € Y(o) existing by theorem 2.8 is a ¢™-function
of x 1in some neighborhood Vm of 0, if y 1is regarded as an element of
ylm,

We summarize our results in the following:
Theorem 2.10:

tet £ @ ¥Y%'" be given such that either f has small norm or £(t) - O
for t greater than some to < o, Then, for each y € ([0,®], (1.1) has a
unique solution vy satisfying y ~ 1 € x%".  In the limit y =+ 0,
y - 1 e x7'" depends continuously on 1, and it is a c®~function of

. . n-k
when regarded as dwelling in x9 .
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3. The Discretization Scheme

wWhen solving (1.1) numerically, one faces the problem that it is to be
solved on an infinite interval. A reasonable way of doing this is to cut at
-T << 0, and replace y(t) for t < -T by its limit 1lim y(t) = 1. We
t -

thus obtain the approximating problem

v ()

. - 3 t -T
w_p * [_ alt=s)ds - (y_(£)-1) + [Zp att=s) (5—— - y_p(s))ds -
(3.1) y_,r(s)

- £(t)yS(t) =0,

(3.2) Yop(8) = 1=0, ¢t c-r .

On the finite interval the integrodifferential equation can now be discretized
in a straightforward manner. Like Nevanlinna (8], we use a first order
implicit (Euler-type) method, because for this simple procedure we can prove
that the qualitative properties of scolutions of (1.31), such as exponential
decay at infinity and uniform convergence as yu + 0, carry over to the
discrete problem. Since these properties are essential for the continuous
problems it is very reasonable to require that the computed approximating
solutions exhibit them too. Our computations have shown that good
approximations can be obtained with quite large mesh sizes, and so the
computational effort for the first order scheme remains reasonably small.

We choose mesh points ty = ih, 1 e 2, where tm = T, and denote by

Y the approximation to y(ti) (or, respectively, to Y-T(ti))' Then our

discretized form of the equation reads

3
Y,-Y. t i Y.
i "i-1 -m 3 , i
b + f_m a(ti-s)ds . (Yi-1) + h ._zm+1 a((i—J)h)(—E - yj) -
(3.3) J yj

a
- = () . i > =
f(ti)yi i m

~-18-




(3.4) Yy - 1=0 . i<-m .

Obviously,

t . NOK, A (e -t
(3.5) [Lo alt,=s)ds = ] —e .
=1 "2

Equation (3.3) has the form

3 a
. + =
(3 6) C1Yi Czyi + c3yi C4 ’

where the c¢'s depend on u, h, t ti and vy., j < i.*

3
The analysis of the discrete equation will be carried out in the same

~m’

sort of spaces as the analysis of the continuous equation. We therefore
define discrete analogues of the exponentially weighted spaces introduced in
Definition 2.2,

Definition 3.1:

o A o0 ao N
Let X' : = {f = (f.), e £ |1im £, =: f exists,
h i i=-o i oo
i »oo
vim 2 Mg 2f | = 0, 1im e 1ME | = 0}
s i @« i
i+ {ir—wo
o] A © o iah -ioh
s = = 1 = 1i =0 .
and Yh {3 (gi),= L&t lim e \gil m e |gi| } The

i+ 4=

natural norms in these spaces are

i oh -i
12 = sup e'? |£.-f | + sup e Oh|f | + [£f |
c . i e . i o
X i>0 i<n
h
and
i gh -i
1IGh _=supe Iqil + sup e OhIqil .
Y: i>0 i<0

Setting 2z = (yi-1):: o’ We rewrite (3.3) and (3.4) in the abstract form

*

Equation (3.6) will be discussed at the end of this chapter.
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A
(3.7) Fh,m(z) =0 .

Now let £ e Y'"(g>0, neN be given such that the assumptions of theorem

2.4 hold. It is an easy exercise to show that, for any € € (0,0},

XG"E > YO“S

(3.8) Fh,m RN h

(we explain below why € 1is introduced).

The aim of the following analysis is to prove that (yi)i— - converges

%0 . o€ ,

to (y(ti))i=-w in the topology of Xh . The proof will be based on
Keller's [3] nonlinear stability-consistency concept.

Let us first show consistency. The local discretization error

-]
L= (2,), is defined by
1 ij==

(3.9) R = Fh,m((y(ti) - 1. ) .

j==w

g, 1 . . 0,2 : . .
For f ey (which implies uy € Y , uniformly in yu), we find, using
the exponential decay of y as t + t», that in the limit ¢t m + -, h +0

-oltil
(3.10) (a) Iﬂil < o(l)e , 1 <-m ,

vyt ) = ylt, ) -olt, |
(b) | : Ny =t uy'(ti)l = const. o{1)he . ,
tom 3 t Y3(ti)
(c) lf_m a(ti-s)ds * (y (ti) - 1) - f_m a(ti-s)(—5~——— - y(s))ds|
y (s)
al2t_ —ti)
< const. of1l)e ,
i y3(ti) ti Y3(ti)
() |h ) a((i-j)h)(—s———— - Y(t.)) - f alt.-s)(——— -v(s))ds
. J t 1 2
j=-m+1 Yy (tj) -m vil(s)
-oltil
< const. of{1)he .

Here o{(1) stands for a factor that vanishes as ti + ~o, Therefore,

=20~




-olt | ~olt, -2t |
he i + e i m , 1> -m
(3.11) 1%, ] € const. o(1)
i
-olt, |

e i , 1 € =m .

From definition 3.1 we conclude that

-elt_ml
(3.12) [§A] —e < const. (h + ol(e Y .

0 Cp<¢< o 0< e < ¢ < g Note that,

The constant is independent of h, t_ 0

m’

-elt_ |
in particular, the error estimate contains a term of(e m ). The reason

for this is that, when approximating (1.1} by (3.1), (3.2), we have replaced

o-€E,Nn

f by 0 for t < -T, and in the norm of Y this introduces an error

of the order o(e-elT|)- This is the reason why we have introduced the «¢;
for € =0 we would still get convergence, but no estimate for the order.
(3.12) settles consistency,

For the stability analysis, we calculate the Fréchet derivative of Fh,m

at the exact solution (y(ti) - 1):L_m, which is denoted by

-]
(3.13) Lh,m s = DQFh,m((y(ti) - 1)i=-w) .
For G = (u,)? e Xo—e we obtain
i i==c h

-21-




u,, i € -m

t-m 2
+ 3 f_w a(ti—s)ds y(ti) uy

+

< i yz(ti)
3n( ) ali-jin) —5—___]ui

(3.14) (thmﬁ>i =
j=-m+1 y (tj)

. 3
i y (ti)

- h I alti-h) (2 —
j=-m+1 y (tj.)

+ 1)u,

o1 .
a f(ti) y(ti) ui, i>-m .

Stability means that L;1m exists and that it is bounded as an operator from
’

Y:_E into X:-e uniformly with respect to h, t-m' u and 0 < e € EO < 0.
Theref look at th ti =9 for ¥=(v,). eyTE
erefore we ok a e equation Lh,mu = or v = Vi)ic-m o
For i < -m we find u; = vy, and for i > -m we show that
2
tm 2 i-1 y (e
G (h,=m,) = £+ 3 [ Talt -s)y"(t)ds + 3h | a((i-)n)
= 1
(3.15) ™ v (e

- a e v e
1 1

which is the coefficient of uy in (3.14), is bounded away from 0
uniformly in h, t_ and u.

m

It is easy to show that

2
t, y (t,)) -
G (h,-m,u) =+ 3 | Y alt -s) Loas - a £t v? 1(t.)
i h -0 i 2(5) i i
(3.16) b4
-olle 1+lt_ D)
+ 0(h) + ofe ).
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Using (1.1) we get

. t
=dy 3!

Ui(hr_mIU) h Y(tl) J oo

a(ti-s)y(s)ds - uy(ti) +
(3.17)

a a -otle, I+le_ 1)
+ (1 - DE()y (£)) + O(h) + o(e ).

It follows from chapter 2 that
(3.18) 0 <yy Syle,m < ;E, ly(e,ml <y

uniformly for y e [0,»), For f <0, (3.16) provides a uniform lower bound

for Gi’

and, for f > 0, (3.18) provides a uniform lower bound, since
a < 3.
The preceding considerations make it apparent, why the term
f_;? a(ti-s)ds(yi3 - 1) should be maintained in (3.3). If this term were

neglected, the uniform bounds on Gi would no longer hold, and, unless a

constraint of the form E ? const. is imposed, an artificial boundary layer

can be nenerated at t_m+ We see from the above that Lh m ©an formally be
7

inverted. It remains to be proved that the solution 4 of
A Y
.10 = v
(3 ) Lh'mu
satisfies an estimate
13,20 G < const. VI

o~ E o-€

with the constant independent of h, t_

ml
We hegin with the reduced problem for u = 0. (3.14) vields
i-1 0
(3.21) u, = h ¥ alti-f)h)a, ,th,-mu, + v,
1 . 1,7 J 1
ij=-m+1
-23-




-

where
3
4 (ti)
25—+
(3.22) oy, e = 6, (h,~m,0) * Vi T G (h,-m,0)

with G, as defined in (3.17). Since y{(-) 1, this implies, after a

simple calculation 1

where y +0 as h + 0, t n + ~o, t > -0,

Using the form of a, we get from (3.21)

i-1 N mh (-t ) 0
(3.24) lu,] < cth,yyh ¥ ! Ke AR VU T e
* J=-m+1 g=1 ] *

The solution v, of the equation obtained by replacing \vi\ by the

i(o-e)h —
v

larger quantity e i o’ where

(3.25)

provides an upper bound for luil. In analogy to chapter 2, we substitute

L =1 A (t -ty
(3.26) gr=xh J e Dow, = 1,208,
1 j=-m+1 L

which yields the Aifference equation

~24-




and the following difference equation for wy

Wigg W T C(h,v)

(3.28)

(3.27) and (3.28) form a system of difference equations.

1 N
(3.29) Zi = (wi:gi,---,gi):

N

)

2=

+ (e(o~e)h_1) ello-€)h

A

~i,h

(e
1

= ({(

L

lo—eih

we can rewrite this system in the form

2
-g  + Cth,y) ] Khe “w

(3.30) zi+1 = (I + lx(h,y))z.1 + wi
where
N —Azh
Cth,y) ] Xhe
=1
-Ah
K _he !

(3.31) A(h,y) =

_XNh

KNhe

=25~

v

N

-Xih

i

2=1

]
©
L

Setting
1 ei(o-e)h el m,O,---,O) ’
L
i 5 em
~-ih
Cth,y) (e - 1)....Clh,y) (e
IS R
e
0]
(o] 'XNh
e -1

h

\

=

\



The solution of (3.30) is given by

- i-1
i=1+m
(3.32) z, = (I + A(h,Y)) z_ 4t N

(1 + an,yn i,
j=-m ’

with the initial condition =z = (e'(m'1)(°'e’hn3u o’ 0,e0.,0).
L

The goal of the following analysis is to show that

-m+1

-i(o—e)h“

(3.33) sup e ziﬂ < const v

i<o L

which implies

-i{o~€)h -i(o-¢)h
I |v

(3.34) sup e uii < const. sup e
i<o i<0

i

Summing up the geometric series in (3.32), we obtain the estimate

1
0
i+m-1 .
-1{(o~€)h ¢ 1(1+a(h,Y)) 0/ 0 -
e “ziu < const. L (Lem-1) (=) h + 1 v
e L
(3.35)
(o-e)h I+A(h,Y) -1 1
. |((e -1 oz - ey
e(c—e)h J

We thus have to prove estimates of the following form

1
I+A(h,Y) o
(3.36) p(m2=e Xy f ) < const., k €N
{o-€e)h
e .
0

and
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-1
1078 _ gy L y(r - BRIy ot

3.37
¢ ) e(<s~e)h

Both will follow from an analysis of the Jordan form of A(h,y). For h,y

small enough we can write

(3.38) Alh,y) = h(gi AC0,0) + O(h) + O(y))
where
N
c(0,0) ] X, =C(0,0)h,eee  =C(0,0)
2=1
Ky ~A, 5
(3.39) q .
— A(0,0) = * T
dh . o .

This matrix has the characteristic polynomial

N N AQ.KR.
(3.40) plp) = C(0,0) J K, - p=-c(0,0) | 35
=1 g=1 "¢ P
N KR -1
Recalling that ¢{(0,0) = ( z 3—) , it is an easy exercise to show that the

2=1

x

root 0 is two fold. An analysis similar to that given for (2.3) shows that
all remaining zeros are real and negative.
A similar calculation shows that zero is also a double eigenvalue of

a A(0,0) + O(h) (as of (3.38)). Therefore we get for the eigenvalues of

ah

ACh,Y)

(3.41)(a) 91(h,Y) = ho(1), pz(h,y) = ho(1) as Yy + 0
(3.41)(b) o (h,y) = h(S; +0(1)) as h,y » 0, i = 3(1)(N+1)
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where Si <0 for i = 3(1)(N+1) such that
1+Di(le)
. —_———— 1
(3.42) | o(o-en , <

holds. Equality in (3.42) only holds for h = 0. Since % a(h,0) |is
holomorphic in h = 0 and since the eigenvalue cf % A(h,0) do not change
multiplicities as h + 0 (the negative eigenvalues of g; A(0,0) are
distinct and ( is a double eigenvalue of % A(h,0)). There is a matrix
G(h) such that G(h), G_1(h) are holomorphic in h =0 and J(h) defined
by
A(h,0) = G(h)I(N)G™ (h)

is the Jordan form of A(h,0) (see [2)). Therefore (3.36), (3.37) hold for

Y = 0. A simple perturbation arqument assures (3.36), (3.37) for

sufficiently small. Thus for h sufficiently small and X > 0 sufficiently

large, we have proved that

-t (o=e) _
(3.43) sup e Iuil < const Wil _ .
t, <=K £
i
The solution u; can be continued over the finite interval ([-X,0] and by a

standard stability analysis (see [1]) we obtain (3.34).

We now have to treat the case ti » 0. For this, we rewrite (3.21) as

a((i-jjh)a, .(h,-m}u,
J i,) ]

(3.44) -1

+ h jZI a((i-J)h)ai'j(h,-m)uj v,

where it is agsumed that tI » X 1is sufficiently large. After some
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calculation, we get from (3.15),

(3.45) ai,j
where
(3.46) D(h) = !
¢ N Kl
h] ———
2=1 Alh
e

’

-1

I8

(3.22).

i,

(h,-m) = D(h) + By

(h,-m)

.(h,- =0
3 m) | (e

It is therefore natural to study the equation

(3.47) G; = D(h)

where v is vy plus the first sum in (3.44), and interpret (3.44) as a

i

i-1
] al{i-j)imu
i=I

perturbation of (3.47). As before we put

. i-1
{3.48) 9, = K;h y e
=1

which leads to the difference equation

2 2 -A.h N
9ieq - 9y = K, D(h)he _Z
i=1
(3.49)
Here the relation
(3.50) i =bh J g
i . i
j=1
has been used.
-29-
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1 N -h -XNh
Putting gy = (gi,...,gi), e(h) : = (K, e ,...,KNe ), we obtain the

following matrix form of (3.49)

(3.51)

9y4q = (I + B(h))g, + v hee(h) .

This has the solution

i=-1 fmim1
(3.52) g, =h ] 1+ BT
j=I

G}e(h) .

When dealing with the case £y < 0, we used a 'redundant' system of equations
rather than an analogue of (3.49). The reason for this was that it is easier
to compute the characteristic polynomial of the matrix of the 'redundant'
system. In the 'redundant' ((N+1)-dimensional instead of N-dimensional) form

(3.49) reads

N -2,h N -A,h

- ~ &~ 2 2
U, - U =Dh § Ke u, + D) ] (e Vg
2=1 =1
(3.53) . .
T Vi T Y
-2 ,h -A,h
L % 2~ e
Iyeq9 ~ Iy T Kgh e uy + e Vg -

When we write this in matrix form

(3.54) Zioq = (1 + A(h))zi + di

- Gﬁ, 0,¢++,0)), we see immediately

(where 1z, = (ui,gi,...,gi), d.1 = (Vi+1 i

1

that A(h) is the same matrix as (3.31), except that C(h,Y) is replaced

by D(h). The characteristic polynomial is

. g g e-xlh(e-xlh- N
(3.55) alp) =D(hh | K.e - p+Dhh § K
) LR -2 h
=1 2=1 L
p-(e -1

It is easily verified that p =0 1is a double root. Moreover, since
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(3.56)

the other roots are small perturbations of those of p(p)

and have therefore negative real parts.
dimensional matrix B(h),

that 0 as an eigenvalue of B(h)

When passing from A(h)

p(h) = c(0,0) + o(h) ,

as given by (3.40)

to the N-

the eigenvalues obviously remain the same, except

has multiplicity one rather than two.

Hence there is a matrix E(h) such that E(h),E'1(h) are continuous for h e

[0,h0) and the Jordan form J(h) of B(h)
(3.57)

has the block form

0 0 ... 0
0
0

(3.58) J(h) = 0 J_(h)
0

where the (N-1) x (N-1)-matrix J_(h) has

real parts. The continuity of E(h),E-1(h)

1

1
in h and since the eigenvalues of h B(h)
(see [2)).
If we put gy = E(h)wi, (3.52) vields
i-1 imiot
(3.59) w.=h J (1+ 37

j=I

J(h) = E-Y(h)B(h)E(h)

only eigenvalues with negative
holds since % B(h) is analytic

are distinct even for h =0

Jje'1<h)e<h> )

In the first component this reads in particuvlar

(3.60) w, =h V Jj

- 1
(E 1(h)e(h)) .

From this we obtain the following estimate for t_ + oo

-31-
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lim |w1| < const sup el(O-E)hIJ.l
. ; i
1+w i>I
(3.61)
it(g~¢)h. 1 - ~
sup el(o €) jw, = 1lim w?l < const. o(1) sup ei(o e)hlv.l .
X i i . i
i>1 1+ i3I

2
For the components (wi,...,w?), where only eigenvalues with negative real

parts are involved, an analogous estimate follows from the same arguments that

have been used in the case ti < 0, and we even have 1lim wg = 0 for
i+ 1
l > 1.
Let us now introduce the spaces 4
AC D= £ = (£)] | lim gtlomem le,.1 = 0}
’ i»1
- i Jad h
O€ _ g = (£)7 _ | 1im £, = : £ exists, lime TP 1 ¢ 2 gy
h,I i’ i=I R i o ) i "
i oo 131
and the operator
o-€ o~
.6 :
(3.62) PI(h) Ah,I > Bh,I

which is defined as the solution operator corresponding to (3.47), i.e. the

, ~ a0 -~ -]
operator mapping (Vi)i=I to (ui)i=1' wWhen we put

i=1
(3.63) (Gu), = h ]

( i")h) . .(h"" u, ’
; a((i-Jj 81,3 m uJ

I
(3.44) can be rewritten in the form
. = P _(h)(Gu + v i > .
(3.64) uy I( ) (Gu v)i . i 1
It follows from (3.61) that PI(h) is a hounded operator. Moreover, (3.46)
implies that G has small norm. Therefore, I - P ()G is a nonsingular
o-€ o-¢€ . .
operator from Ah . into B , and the norm of the inverse is bounded
r

h,I

uniformly with respect to h, t_g and ¢. Therefore,
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(3.65) sup e“o—e)hlui - lim uil + |1lim uil < clvt _
1>0 i+e i+ Y:
and, summarizing, we obtain
(3.66) A < const %1
o-€ o€
*h h
where the constant is independent of h, t_ = and ¢ € [O,eo], where
€ < g. This concludes the stability proof for = 0.
We briefly sketcr the stability proof for u > 0. Egquation (3.19) now
takes the form
. 3
u,-a, i-1 y (ti)
W= = cHi(h-mu 4 h ] al(i-nm (2 * e+ v,
(3.67) j=-~m+1 Y (tj)
i>-m
where
t i-1 yz(t.)
-m 2 , i
H (h,-m) = 3 [ "7 a(t,~s)y“(t.)ds + 3h §  a((i-j)h) —— -
i -0 i i , 2
j=-m+1 y (t.)
(3.68) ]
a~1
af(ti)'y (ti) .
with D(h) as in (3.46),
-o-ti
Ol(e ) as ti +
(3.69) H (h,-m) = +
i D(h) ot
Oo(h) + Ole as t, » -o

We can therefore use a similar perturbation approach as before, i.e., for

t, > oo
1

B 3~ 1l
(3.70) " = - u, + 3 3§

This can be rewritten as follows

j=-m+1

(3.67) is regarded as a perturbation of the problem

a((i-j)ha, + v, .
J 1




j-2

(3.71) u, = ythyuu,_ o+ 6thywh ) a((i-j)h)uj + v,
j=~m+1
where
" M 3 ! u —
Y(how) = &+ 3hath)) (¢ + o) o Sthew = 35 * oery) .
We substitute
i-2 - (t, . -t.)
gi_1 = h K£ e 2i u
j=-m+ 1 )
(3.72) N b
Zo.= T e Y.
i-1 2=1 i-1
~  ~1 N ~

We set wi = (“i’zi'gi""’gi)’ wi = (d(h,u)(vi -v, ,)y, 0,.4.,0). Then

i-1
(3.70) is equivalent to the system

(3.73) w, = (1 + F(h.u))wi_1 + "N
with
y(h,u -1 S(h, u) 0. . . 0
N -2\A h -A.h -=X,h -th - h
h z K e . 0 e ! (e v 1) e (e XN
2=1
(3.74)
—k1h -X1h
F(h,u) = h K1e 0 e -1
. 0
. . 0
-XNh -k“h
\ h Kee 0 e -1
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As before, it can be shown that the characteristic polynomial of DhF(O,u)
has the same roots as (2.3), except for the fact that 0 is a double rather
than a simple root. ﬁoreover, 0 4is an exact eigenvalue of F(h,p).

A proof analogous to the one for u = 0 shows the stability for yu
fixed and sufficiently small h. For the limit y + 0, a different argument

is needed. When we substitute in (3.73)

~ §(h,u) ~ ~ ~ ~
7 Sthew , _
(3.73) U Ython-1 % TPy 23 %9

we obtain a system of difference equations of the form (3.73) with F(h,u)
substituted by a matrix of the following form
y(h,uy = 1 O(h)

(3.76) F(h,pu) =

4 2
o(h) he an A(0,0) + o(h™)

Moreover, an estimate of the form -1 < y(h,u) = 1 < =-u min(C1,C2 %) holds

where w > 0. Thus for small 1y, |y-1| >> h. It is easy to conclude from
this that there is a coordinate transformation close to the identity which
transforms F to the form

(Y(h,u) - 1+ 0(h) 0

(3.77) F =

a
. O h e A(0,0) + o(h)

Stability follows from the above estimate for y - 1 and an analysis of the
eigenvalues of g; A(0,0) given by (3.39). For ti + - g gimilar argument
holds, but D(h) is to be replaced by a different constant S(h,t_m). From

these considerations we see that

-1
(3.78) "Lh m i o-c e < const.
’




e ——————

with a constant independent of h, -m, y and ¢ € [O,EO], €0 < 0.

It is practically important to assure stability not just for h

sufficiently small, but also for arbitrary h. Recall that linearizing
—th

e - 1 with respect to h 1is only justified if h <« % . The matrix
L
F(h,u) for arbitrary h has the same form as for h small, if the
e')‘ih -4 =2);h
following substitutions are made: Ai > B — Ki > Kie ,

h
> ou+ E%ET' If t has compact support, this is sufficient to ensure

stability. If the support of f is not compact, stability for arbitrary h

can be assured if the following modification is made: In (3.3) the integral

t -m
f_u? a(ti—s)ds is replaced by h Z a(ti-tj). With this modification
jo=o

the term O(h) in (3.69) vanishes, and thus the matrix for the linearized
problem is asymptotically equal to F(h,yu) both for ti +» o and ti > -,
In order to apply Keller's [3) nonlinear stability concept, it is further
necessary to show that the Fréchet derivatives DEFh,m are uniformly

Lipschitz continuous in a sphere

This follows from a fairly trivial calculation, which we do not nresent here.
Using the fact that the global error (y(ti) - yi):;_m is estimated by 1
constant times the bound for the local error (3.12), we obtain the followina
theorem:
Theorem 3.1
The discretization scheme (3.3), (3.4) has a unique solut.~»n for all
3,1 , .

feax , where g 1is as of Theorem 2.3, this solution y = (y, } an

he calenlated hy the 'ewten nrocedure which {s second order converaent from g

- 3f.-




’-—'—-—-——-—.—_______“

sphere of starting values which does not shrink to @ as h » 0, t_m + -,

i + 0 and the convergence estimate

-e(t_ )
(3.79) Iy, = y(e )7 1 <const (h+ ofe "))

holds for h sufficiently small and lt_ml sufficiently large. The constant

is independent of h, t ue [0,x, ee (0,el, g, < o

—ml O

This implies that the Newton procedure for the solution of (3.6) can be

safely applied, that the (yi)°°

P do not exhibit boundary layer-like

behavior and that

(o-e)t, —ele_ |
(3.80) Iyi ~ y(ti)l < const. e (h + ole Y. t, <0
—elt_mi
(3.81) |limy, - y(=)| < const. (h + ole ))
i »c0 1
-lo-elt, -elt_m?
(3.82) |(yi - limy,) =~ (y(t)) - y{®)| < const. e (h + ole Vot 20

1+

and the order of convergence is independent of y € [0,],
Obviously if f 1is only supported on [Tt'TZ]‘ then the term

-elt |
-m
Ole ) disappears from the error estimate if t_ < T,.

m
The discretization we used was derived from the integral equation. In
chapter 2 we transformed to a system of ordinary differential equations. In

fact, up to terms of order O(h), our discretization method corresponds 15> a

discretization scheme for the ODE system (2.1). Namely, if we put

ST
Joke P 4 = |
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hyy =h Y x,e y. o+ h =0
j=~m+1

our discretized equation reads as follows:

Y.~Y. N -2 h
i Ti-1 £ 3
U( h ) = 22:1 e (qﬂ,i-‘lyl - hg,i-1)
(a)
a t:--m 3
- £y + . a(t -s)ds(y; - 1) ]
(3.83) ) . g
by Rttt T2 (e - )
h 2 h 9g,1-1
Yy
-A.h
(o) Dei T PaLica - x , le Yoy .
¢ h Yy h L, i-1 " '

By calculating g2 ! for £ = 1{1)N from (3.83)(b), (3.83){(c) and by
1,

hl,i
inserting these quantities into (3.83)(a) an equation of the foru (3.6) is
obtained (in each time step). Theorem 3.1 now implies that the root of this
equation can be safely obtained by the Newton procedure which is second order
accurate from a sphere of starting values whose radius is independent of h,

t pe [0, and i > -m.

-m’

This provides us with a very efficient method to solve the approximating

problems and Theorem 3.1 makes sure that the qualitative properties of the

solution of (1.1) carry over to the approximate solutions.
The exponential decay of the solution encourages one to attempt using
variable mesh sizes of the form

-aolt, |
1

A
(3.84) hi = he .
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A
It can be expected that convergence of the order one in h, i.e. the
-olt |
-m -]
) , would follow in 2 but the

estimate would be O(g) + o(e
exponential decay préperty of the approximate solution would be lost. In the
case of boundary value problems for ordinary differential equations on
infinite intervals this has been shown in (7].

A further problem that should be mentioned is which higher order
discretization schemes could be employed. It is fairly clear from our
analysis that polynomial collocation methods using Radau points (see [12])
could be used and the exponential decay property and the uniform convergence

as y + 0 would be recovered.
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4 Numerical Results

For the computations we used the kernel a(u) = E Kie—xiu with the
following constants Ki and xi =
i xi(sec") K, (nm~2sec™ )
1 1073 1 x 1073
2 1072 1.8 x 109
3 10~1 1.89 x 102
4 1 9.8 «x 103
5 10 2.67 x 10°
6 102 5.86 x 10°
7 103 9.48 x 10’
8 104 1.29 x 102

These numbers were obtained by Laun [4] from an experimental fit for a
polyethylene melt at 150°C, which he calls "Melt 1",

The parameter | is physically identified as three times the Newtonian
contribution to the viscosity. Experimental values are not available, and
theoretically u is either a solvent viscosity (for polymer solutions) or it
results from fractions of low molecular weight (for melts). The value of
has to be compared to the viscosity resulting from the memory, which, for
8
v

K.XTZ s 50000 Nm-zsec. Ane wounld expect

constant shear rate, is given by i

/.
i=1
u to influence the solution significantly only if it exceeds this value.
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This is verified by our computations. In the plots the scale for y 1is on
the left, the scale for f 1is on the right. y 1is measured in multiples of
the length (for the filament, a = 2), or, respectively, the thickness (for
the sheet, a = %) at t = -»; f denotes the force acting on the ends of the
filament or the edges of the sheet divided by the cross-sectional area in the
undeformed state at t = -, £ is expressed in EE' The time is measured in
seconds. f 1is always plotted by dashed lines, : by full lines.

All plots except figures 7, 8 were made for a = 2, the case of the

filament. 1In figures 1 - 11 (except 6), the force f is of the form

0 >
It} 2,
f(t) = az
£ exp{a2 - }
max 0 a -t2
2
2
2 P
with ao -3 = 0, Such an f is in C (R,R) and has the compact support
a
2
[-az,azl.

The parameter u 1is zero in figures 1t - 9. 1In fiqures 1 - 5 we have

chosen various values of f and a,, as can be seen from the

max’ 20
diagrams. The calculations were done for larger time intervals than the

plots, thus yielding approximations for y(«). For figures 1 - 5, the

approximate values of y(=) are as follows:

*
fiq.{ 1 l 2J 3 4 5

v (o) 1 1.07 ‘ 1.15 l 1.11 1.26 1.13

*
(in this fiqure supp f 1is different from the previous ones)
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These numbers indicate that, roughly speaking, the value of y(«) - 1 |is
proportional to ffm f(t)dt. This would in fact be exact for the linearized
equation.

In figqure 6 an oscillating force was chosen. It is observed that the
solution y "follows" the oscillations with a certain delay.

The figures 7 and 8 illustrate the case of the sheet (g = %). Here
~f 1ig plotted rather than f. The results are qualitatively similar to those
in figures 1 - 5, but now we have y < 1 instead of y > 1.

In figures 9 - 15, we have again a = 2. 1In fiqures 9 - 11, we have
chosen the same f (f max = 40000, a; = 1, a, = a, =26) and computed

>4

solutions for different values of .

H ¥ max vl
0 103 3.3
10° 89 3.4
108 7.7 4.5

For u < 10000, no significant change was observed. For larger u, the
effect on the maximal elongation seems to be more pronounced than the effect
on the final length. Recalling the fact that p = 10000 would correspond to
a viscosity 3 x 106 as large as that of water, it seems conceivable that for
fluids like "Melt 1" u can be neglected.

The numbers for y(w) are interesting in comparison with the results of
Lodge, McLeod and Nohel [6]. They showed that y{®) increases with y, if

the history of y for t < 0 1is kept fixed. Our numbers show the same
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tendency, eventually, however, y{(x) has to decrease, since for y = = we
have y = congt. and thus y(«) = 1, We see from this that, for fixed f,
y(®) is not a monotone function of .

For figures 12 - 15, a discontinuous force given by

0 t >0
£(t) = ¢
40000 exp(TB) t <O

was used. Since in this case the filament recovers freely for t > 0, we are

studying the same situation as Lodge, McLeod and Nohel {6], but we prescribe

the force rather than the history of y for t < 0. By considering the

intervals t < 0 and t > 0 separately, we can easily modify the existence

and convergence theory of the previous chapters for the present case.

However, the solution does not depend continuously on yu in the L -norm as
u » 0. This is because for py = 0 the solution is discontinuous at t = 0.

The following table illustrates the dependence of the maximal elongation on .

S Y max
0 140
2 x 105 58
3.5 x 10S 16
10° 1.6

Acknowledgement. The authors would like to thank Professors John Nohel and

Arthur Lodge for helpful discussions.




{1

(2]

3]

{4]

(5]

e}

N

£

(o1

[10]

1

(12]

REFERENCES

H. Brunner and J. D. Lambert, Stability of Numerical Methods for
Volterra-Integrodifferential Equation, Computing 12, (1974), 75-84.

J. Kato, Perturbation Theory for Linear Operators, Springer-Verlagq,
Berlin-Heidelberg-New York 1966.

H. B. Keller, Approximation Methods for Nonlinear Problems with
Application to Two-point Boundary Value Problems, Math. of Comp. Vol 29,
April 1975, No 130, pp 464-474.

H. M. Laun, Description of the Non-linear Shear Behaviour of a low
Density Polyethylene Melt by Means of an Experimentally Determined
Strain Dependent Memory Function, Rheol. Acta 17 (1978), pp 1~-15.

A. S. Lodge, Body Tensor Fields in Continuum Mechanics, Academic Press,
New York-San Francisco-London 1974.

A. S. Lodge, J. B. McLeod and J. A. Nohel, A Nonlinear Singularly
Perturbed Volterra Integrodifferential Equation Occurring in Polymer
Rheology, Proc. Roy. Soc. Edinburgh 80A (1978), pp 99-137,

P. A. Markowich and C. Ringhofer, Boundary Value Problem on long
Intervals, To appear as a MRC TSR, University of Wisconsin-Madison,
1981,

0. Nevanlinna, Numerical Solution of a Singularly Perturbed Nonlinear
Volterra Equation, MRC TSR #1881, University of Wisconsin-Madison, 1978.

M. Renardy, A Quasilinear Parabolic Equation Describing the Elongation
of Thin Filaments of Polymer Liquids, MRC TSR #2183, University of
Wisconsin-Madison, 1981,

M. Renardy, Bifurcation from Rotating Waves, to appear in Arch. Rat.
Mech. Anal.

M. Renardy, Bifurcation of Singular and Transient Solutions: Spatially
Nonperiodic Patterns for Chemical Reaction Models in Infinitely Extended
Domains, to appear in H. Berestycki and H. Brezis (ed.), Recent
Contributions to Nonlinear Partial Differential Equations, Pitman,
London-San Francisco-Melbourne 1981.

R. Weiss, The Application of Implicit Runge-Kutta and Collocation
Methods to Boundary Value Problems, Math. Comp. 28 (1974), pp 449-46K4.

PM/MR/ jvs

-no-




SECURITY CLASSIFICATION OF THIS PAGE (ithen Data Fatored)

READ INSTRUCTION
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORY NUMBER 2. GOVY ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMBER
#2213 BD ~Aloo bié
4. TITLE (end Subdtitle) 5. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific
A Nonlinear Volterra Integrodifferential Equation reporting period
Describing the Stretching of Polymeric Liquids 6. PERFORMING ORG. REPORY NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(Ss)
P. Markowich and M. Renardy DAAG29-80-C-0041
MCS~7927062
10. ENT, €CT,
9. PERFORMING ORGANIZATION NAME AND ADDRES.S ) 0 ::gi‘RAAwOERLKEGN:‘T NPURMOBJE o TASK
Mathematics Research Center, University of Work Unit Number 3 -
610 Walnut Street Wisconsin | Numerical Analysis and
Madison, Wisconsin 53706 Computer Science
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
May 1981
See Item 18 below 13. NUMBER OF PAGES
59
14. MONITORING AGENCY NAME & ADDRESS(!f diftsrent trom Controlling Oflice) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION' DOWNGRADING
SCHEDULE

16. DiSTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report)

'8. SUPPLEMENTARY NOTES

U. 5. Army Research Office : National Science Foundation
P. 0. Box 12211 Washington, D.C. 20550
Research Triangle Park

North Carolina 27709

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Viscoelastic Liquids, Nonlinear Volterra Integrodifferential Equations,
Singular Perturbation, Numerical Approximation on Infinite Intervals

-

20. ABSTRACT (Continue on reverse alde If necessary and identify by block number)

We study a model cquation for the elongation of filaments or sheots of poly=
meric liquids under the influence of a force applied to the ends. Mathematically
this equation has the form of a nonlinear Volterra inteqrodifforential capnat ton
with the kernel given by a finite sum of exponentials. The unknown function
denotes the length of the filament or, respectively, the thickness of the <heet,
We study the cquation both analytically and numerically. The foree ic acnumed to
converqge to zero exponentially as t » == and to vanish identically after a
finite time £ . It is shown that under this condition there 19 a NN
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ABSTRACT (continued)

solution which approaches a given limit as t - -®; moreover, the rolution
also has a limit as t -+ +®. A numerical scheme is analyzed and convergence
uniformly in t 1is established. Particular attention is paid to the
dependence of solutions on a parameter 1y, which corresponds to a Newtonian
contribution to the viscosity. It is proved that solutions converge uniformly

in t as p ~» 0, and that the convergence of the numerical scheme is also
uniform in .







